Understanding and Detecting On-the-Fly
Configuration Bugs

Teng Wang'?, Zhouyang Jia'¥, Shanshan Lif*, Si Zheng', Yue Yu', Erci Xuf, Shaoliang Peng®, Xiangke Liaof
fNational University of Defense Technology, Changsha, China
$Hunan University, Changsha, China
{wangteng13, jiazhouyang, shanshanli, yuyue, xuerci, xkliao} @nudt.edu.cn, si.zheng1009@ gmail.com, slpeng@hnu.edu.cn

Abstract—Software systems introduce an increasing number of
configuration options to provide flexibility, and support updating
the options on the fly to provide persistent services. This
mechanism, however, may affect the system reliability, leading to
unexpected results like software crashes or functional errors. In
this paper, we refer to the bugs caused by on-the-fly configuration
updates as on-the-fly configuration bugs, or OCBugs for short.

In this paper, we conducted the first in-depth study on 75
real-world OCBugs from 5 widely used systems to understand
the symptoms, root causes, and triggering conditions of OCBugs.
Based on our study, we designed and implemented PARACHUTE,
an automated testing framework to detect OCBugs. Our key
insight is that the value of one configuration option, either loaded
at the startup phase or updated on the fly, should have the same
effects on the target program. PARACHUTE generates tests for on-
the-fly configuration updates by mutating the existing tests and
conducts differential analysis to identify OCBugs. We evaluated
PARACHUTE on 7 real-world software systems. The results show
that PARACHUTE detected 75% (42/56) of the known OCBugs,
and reported 13 unknown bugs, 11 of which have been confirmed
or fixed by developers until the time of writing.

Index Terms—on-the-fly configuration updates, bug detection,
metamorphic testing

I. INTRODUCTION

Software systems introduce an increasing number of con-
figuration options to provide flexibility [1]-[3]. Users can set
option values through modifying configuration files. After that,
software systems load the files during their startup phases.
This procedure, however, is still limited since the users have
to restart the software system once changing an option value.
The requirement of restarting is impractical for software
systems that provide persistent services, e.g., database servers
and web servers. To solve this problem, modern software
systems support updating configuration options at runtime. For
example, MySQL-8.0 has 981 configuration options, of which
about 63% support runtime updating [4]. We refer to these
systems as runtime configurable systems.

The runtime configurable systems create more flexibility,
but on-the-fly configuration updates may affect the system
reliability at the same time. Many bug reports [S]-[14] show
that, dynamically updating configuration options may lead to
unexpected results like software crashes or functional errors,
even if the new option values are valid. In this paper, we refer

i Teng Wang and Zhouyang Jia are co-first authors.
* Shanshan Li is the corresponding author.

MySQL Bug #28808 log_queries_not_using_indexes dynamic change is ignored

Description: Patch:

The option log_queries_not_using_index

can be changed during system running.

But it does not change server behavior.

Reproduction:

1. Start server with the configuration 3-
slow_query log True
log_queries not using_indexes False.

2. Update the option: set global

sql/mysqld.cc
1 static void get_options(int argc){
2 - if (opt_log_queries_not_using_indexes
opt_specialflag |= NO_INDEX;

sql/sql_parse.cc
4 void log_slow_statement(THD *thd){
log_queries_not_using_indexes=True; || 5 if (thd->enable_slow_log &&
3. Execute operations: 6- (opt_specialflag & NO INDEX)
CREATE TABLE, INSERT, SELECT. || 7+ opt log queries not using indexes
4. Check slow query log.

Fig. 1: A real-world example of on-the-fly configuration bugs.
The dynamic change of MySQL option does not take effects,
since MySQL uses an stale value of the option.

to the bugs caused by on-the-fly configuration updates as on-
the-fly configuration bugs, or OCBugs for short.

Figure 1 illustrates a real-world OCBug [5] related to the
configuration option log_queries_not_using_indexes in
MySQL, including the error symptom, the reproduction steps,
the root cause, and the fix patch. This option is used to retrieve
the queries that do not use indexes for row lookups. Admin-
istrators use this option to diagnose performance problems of
SQL queries. As shown in Figure 1, the user changed the
option value from False to True, but the system did not record
related queries. The root cause is that MySQL used the stale
option value rather than the updated one. Specially, MySQL
used variables opt_log_gueries_not_using_indexes
and opt_specialflag to save the option value (Line
2-3), but only updated the former one when receiving
the updating command. MySQL missed changing variable
opt_specialflag before using it (Line 6). The patch is
to remove the stale variable opt_specialflag, and use
opt_log_gueries_not_using_indexes instead.

There has been much research on addressing problems
involving configuration-related bugs [15]-[22]. These works
reuse official tests and oracles to detect configuration-related
bugs and defects. For example, Ctest [22] reuses official
tests and production configurations to detect configuration-
induced failures. SPEX [16] injects configuration errors into
the system under test, and evaluates software reliability re-
garding misconfigurations. The official test cases, however, are
not designed specifically for on-the-fly configuration updates.

Therefore, it is hard for those works to detect OCBugs. Many
other works [23]-[30] use the Fuzzing technique to expose
bugs. This technique requires test oracles (e.g., crashes or
memory sanitizers) to determine if a test input passes or
not. The OCBugs, however, may or may not lead to obvious
symptoms like crashes or bad memory usage. For example,
MySQL-28808 [5] in Figure 1 results in functional errors, and
requires specific oracles to detect. The most related work for
detecting OCBugs is Staccato [31], which checks if values
of configuration-related variables are changed after dynamic
configuration updates. If not, Staccato reports a bug. This is
a conservative method, and may cause many false negatives,
since the variables do not necessarily change to correct values.
More details will be discussed at the end of Section II-C.

In this paper, we conducted the first in-depth study on
OCBugs based on 75 real-world bugs from 5 popular software
systems. We studied the symptoms, root causes, and triggering
conditions of OCBugs. The major findings include: 1) More
than half (59%) of OCBugs have no easy-to-observe symptoms
like crashes or memory leaks, meaning an ideal fuzzing tool
can handle up to 41% cases. This result inspires us to design
specific oracles for OCBugs. 2) The root causes arise from
two aspects according to the lifecycle of configuration-related
variables, including variables that initially read configuration
values, as well as variables that are control/data dependent
on those variables. The result shows that nearly half (45%)
OCBugs fail to assign the variables with updated values
(referred as propagation bugs), while about another half (55%)
improperly use the updated variables (referred as usage bugs).
Propagation bugs can be detected by analyzing dependencies
among program variables, while usage bugs can not, due to
program-specific usage scenarios. Instead, they can only be
detected by examining external behaviors of the program.

Guided by the findings, we propose PARACHUTE, an auto-
mated testing framework to detect OCBugs. The key insight
of PARACHUTE is that the value of one configuration option,
either loaded at the startup phase or updated on the fly, should
have the same effects on the target program. This insight
serves as a novel oracle for testing OCBugs. Based on the root
cause study, the effects in this oracle can be further divided
into internal effects and external effects: a) internal effects are
value changes of variables related to the option; b) external
effects are behaviors that can be observed outside the program.
Internal and external effects are complementary to each other,
and used to detect propagation and usage bugs, respectively.
Both types of effects are necessary, since propagation bugs
do not always lead to observable behaviors (i.e., external
effects), while usage bugs are usually not caused by wrong
configuration-related variables (i.e., internal effects).

PARACHUTE leverages the idea of metamorphic testing [32]
to detect OCBugs using the above two types of effects. In
general, PARACHUTE conducts two executions in each test.
Given an option value, the first execution loads the value at the
startup phase, while the second execution updates the option
to that value at runtime. Then, PARACHUTE determines if both
the internal and external effects are the same between these

TABLE I: Studied software systems and their descriptions.

Project Description LOC # Option # ROption®
MySQL SQL database 3714K 981 622
PostgreSQL ~ SQL database 1869K 344 272
Redis NoSQL database 181K 149 126
Nginx Web server 144K 664 664
Squid Web server 309K 342 340

t ROption is short for Runtime Configurable Option.

two executions. There are two challenges in this process. First,
the testing space is huge. To address this challenge, we conduct
a comprehensive study towards the triggering conditions of
OCBugs in Section II-D, and get three conclusions to guide
the design of test-case generation. Second, the effects may
not happen immediately after an option is dynamically up-
dated. Runtime configurable systems generally allow existing
sessions to adopt the updated values after they complete
the currently-executing transactions and commands [33]-[36].
This is a common practice, but PARACHUTE may believe the
updated options do not take effect. To avoid false positives,
we propose a three-stage metamorphic testing approach by
conducting two additional executions in each test (i.e., four
executions in total). PARACHUTE compares the results of three
pairs of executions to confirm if there is an OCBug.

Parachute also have assumptions on tests, target systems
and bugs: a) The test suite should not contain flaky tests or
test steps causing indeterminate results. b) The target systems
should support dynamically updating of configuration options
and their source code should be available. ¢) Parachute is
currently unable to detect OCBugs caused by multiple updates.

We evaluated the effectiveness of PARACHUTE in detecting
both known and unknown OCBugs. First, we reproduced 38
known OCBugs from the real-world bugs in our empirical
study. To avoid over-fitting, we also reproduced 18 known
OCBugs from MariaDB and Httpd, which are not included
in the study. The evaluation shows that PARACHUTE can
successfully detect 42 bugs (75%), while Staccato [31] detects
15 out of the 56 OCBugs. Moreover, PARACHUTE detected 13
unknown OCBugs from 5 software systems, and 11 of them
have already been confirmed or fixed by developers.

To summarize, this paper makes three major contributions.

e We conducted the first in-depth study on real-world
OCBugs from 5 open-source software systems to help
understand the characteristics and root causes of OCBugs.

e We designed and implemented an automated testing
framework, PARACHUTE. It can generate tests for on-the-
fly configuration updates by mutating the existing tests
and conduct differential analysis to identify OCBugs. All
data and source code can be found in the repository:

https://github.com/wangteng 1 3/Parachute

e We evaluated PARACHUTE on 7 software systems.
PARACHUTE detected 75% (42/56) of the known
OCBugs, and 13 unknown bugs from 5 software systems.
Until the time of writing, 11 of the unknown bugs have
been confirmed or fixed by developers.

TABLE II: Symptoms of on-the-fly configuration bugs.

. Memory Functional

Project Crash Hang Leak Error Sum
MySQL 5 0 0 16 21
PostgreSQL 7 0 2 5 14
Redis 6 3 2 16 27
Nginx 4 0 0 3 7
Squid 2 0 0 4 6
Total 24 3 4 44 75

II. UNDERSTANDING OCBUGS

We conduct an empirical study on OCBugs to guide the
design of PARACHUTE. In this section, we will first describe
the study methodology, then introduce our findings including
the symptoms, root causes and triggering conditions of real-
world OCBugs.

A. Study Methodology

The study methodology includes the criteria to choose study
targets, the method to collect OCBugs, as well as how to
validate and analyze the collected data.

Studied Subjects. Table I describes 5 software systems
used in our study. We chose these projects because: a) they
cover different domains, including database and web server; b)
they are widely used and studied by the existing works [15],
[16], [37]-[39]; c) they are highly-configurable and expose
many runtime configurable options; d) they are open-source
and well maintained by the community. These criteria ensure
the impacts of studied bugs, and allow us to not only obtain the
buggy and fixed code versions, but also collect related details
of the bugs, such as root causes and reproduction methods.

Data Collection. We collected real-world OCBugs from
tracking systems, mailing lists, and fixed commits of the
studied projects. In order to locate OCBugs, we used the fol-
lowing two types of keywords to search for related issues and
commits: a) keywords related to description of configuration
updating, e.g., reconfig, resize and update; b) keywords related
to the command to update options dynamically, e.g., Config
SET for Redis, nginx -s reload for Nginx.

Validation and Analysis. We manually validate each poten-
tial OCBugs by inspecting each issue description and related
code patches. Each case was inspected by two inspectors.
When they diverged, a third inspector was consulted for
additional discussions until consensus was reached. They spent
two months validating and analyzing the bugs. We filter out
the issues where configuration options are not updated on-
the-fly during software running. For example, users change a
configuration file and restart the software. In the case that
we are not sure whether a bug is caused by configuration
updating or a special value of the related option, we try to
reproduce the bug to validate whether the value itself would
cause the bug. Eventually, we collected 75 OCBugs from five
selected projects. We further analyzed each OCBug to answer
the following three research questions:

+ RQ1: What are the common symptoms of OCBugs?
o RQ2: What are the root causes of OCBugs?

TABLE III: Root causes of on-the-fly configuration bugs.

Propagation Bugs 34 (45%)
Fail to consider loading the updated values 7
Load wrong updated values 16
Miss to propagate to other variables 11

Usage Bugs 41 (55%)
Fail to consider handling updated values 8
Improperly handle updated values 27
Bad update timing that causes data race 6

o RQ3: What are the triggering conditions of OCBugs?

B. Symptoms of OCBugs

We study the symptoms of OCBugs to understand how the
bugs affect software systems. The results are shown in Table II,
OCBugs could cause the systems to crash, hang, memory leak,
and functional error.

Crash and Hang. About one third (27/75=36%) of OCBugs
lead to system crashes or hangs. For example, in Redis
#4545 [6], when Redis is working on AOF rewrite operations,
and users close the AOF mode by dynamically turning off the
option appendonly at the same time, Redis would infinitely
repeat the AOF rewrite operations. The detailed root causes
will be described in Section II-C2.

Memory Leak. Other OCBugs (4/75=5%) may cause catas-
trophic memory leak or resource abuse. For example, in
PostgreSQL #16160 [7], option ssl_ca_file is used to
specify the SSL certificate authority file. When users update
an unexsiting path for the option and reload PostgreSQL, the
system will suffer from memory leaks or even OOM errors,
since PostgreSQL did not free the failed file object during
reloading configurations.

Functional Error. Most (44/75=59%) of OCBugs result in
functional errors, including unexpected behaviors and wrong
results. For example, the option in Figure 1 did not take effect
after the update. Another example is that MySQL calculated
a wrong increment value in MySQL #65225 [8]. Functional
errors have no easy-to-observe characteristics to identify, this
is different from system crashes and hangs.

Finding 1: About two-fifths (41%) of OCBugs have
obvious symptoms like crashes or memory leaks, while
most (59%) of OCBugs result in functional errors that
have no easy-to-observe characteristics.

This finding implies that most OCBugs are hard to detect by
the existing testing technology like Fuzzing, which typically
requires easy-to-observe symptoms as test oracals. This means
that existing fuzzing tools can detect up to 41% OCBugs.
During the study, we found users frequently compare the
effects of an option either loaded at the startup phase or
updated on the fly, and report bugs [5], [9], [11] if not
consistent. Inspired by these bug reports, we propose a more
effective test oracle — The value of one configuration option,
either loaded at the startup phase or updated on the fly, should
have the same effects on the target program.

1 void set_config_option(const char *name,...){

2 + /* If value == NULL then we reset some value to
3+ *its default (removed from configuration file).*/
4+ else if (source == PGC_S DEFAULT)

5+ newval = conf->boot val,

// parse options from config file
if (!stremp(argy, "client-output-buffer-limit")) {
hard = memtoll (argv[2],NULL);

// parse options when updating
set_special_field("client-output-buffer-limit") {
- hard = strtoll (v[j+1],NULL);
+ hard = memtoll (v[j+1],NULL);

0NN R W=

/ Initialize variables when system starting
static void mainInitialize(void){
useragentlog = logfileOpen(useragent log);

}

// Update variables when system reconfiguring
static void mainReconfigureFinish(void *) {
+ useragentlog = logfileOpen(useragent log);

(a) Fail to consider loading the updated values.

(b) Load wrong updated values.

(c) Miss to propagate to other variables.

1 // Called server.hz times per second

2 int serverCron(...){

3 // Trigger an AOF rewrite if needed

4 if (server.rdb_child pid ==-1 &&

5+ server.aof fd==AOF ON &&

6 server.aof _current_size > server.rewrite_min){
7 rewriteAppendOnlyFileBackground();

1 if (got_SIGHUP){
2 if (stremp((Log_directory, currentLogDir) != 0){

3 currentLogDir = pstrdup(Log_directory);

4+ /Create new directory if not present

5+ mkdir(Log_directory);

6 logfile_rotate(Log_directory, Log_filename);

1 - if (!buf_pool_is_obsolete(withdraw_clock)
2 - && optimistic_latch leaves(

3 - cursor->modify_clock,...) {

4 + if (m_block != NULL) {

5+ rw _lock s lock(latch);

6+

7+ 1w _lock s unlock(latch);

(d) Fail to consider handling updated values.

(e) Improperly handle updated values.

(f) Bad update timing that causes data race.

Fig. 2: Examples of root causes. Each example illustrates one type of OCBugs listed in Table III.

C. Root Causes of OCBugs

We study the root causes of OCBugs by manually analyzing
the patches and comments of each OCBug. The overall finding
is that the root causes can be clearly classified into two
categories: a) incorrect propagations of configuration-related
variables (referred as propagation bugs); and b) incorrect
usages of the variables (referred as usage bugs). Configuration-
related variables include the variables that read and store the
original value of the involved configuration option, as well
as variables that are control/data dependent on the original
variables. All these variables should be well defined during
the propagation phase before using. This classification is
straightforward since every variable should be first defined and
then used. The results are shown in Table III.

1) Propagation Bugs: Nearly half (34/75=45%) of OCBugs
happened during propagating configuration-related variables,
meaning failed to assign the variables with updated values. In
specific, the propagation process may have three error scenar-
ios: a) the programs do not load the on-the-fly updated values
at all; b) the programs try to load the values, but get wrong
values since the parsing methods are incorrect; ¢) the programs
correctly load the values, but errors occur because of missing
to propagate the values to other configuration-related variables
after configuration updates. The following paragraphs will
present OCBug examples for each error scenario.

Fail to consider loading the updated values. The up-
dated options are sometimes not loaded by the system. For
example, in PostgreSQL #3589 [10], the user removed one
option in postgres.conf to use its default value, then reloaded
configuration file at runtime. The configuration-related vari-
able, however, retained the old value, rather than its default
value. In Figure 2(a), developers fixed the bug by changing
options to their default values if options were removed from
configuration files.

Load wrong updated values. The programs may get wrong
values when parsing dynamically updated options. Taking the
bug [9] in Figure 2(b) as an example, Redis uses memtoll()

to parse the option client-output-buffer-limit during
system startup, but uses strroll() to parse the same option when
reconfiguring. One option value might be parsed into different
values when using these two methods, e.g., memtoll(“64mb”)
returns 67108864, while strroll(“64mb”) returns 64. The fix
is to use memtoll() instead of strtoll() when reconfiguring.

Miss to propagate to other variables. The variable that
holds the original option value may frequently propagate to
other variables through data-flow or control-flow dependen-
cies. Figure 2(c) shows an example [11] caused during data-
flow propagation. Squid uses the option useragent_log to
initialize the logfile. The user tried to disable the option and at
runtime, but the stale logfile continued to collect logs. This is
because the variable useragentlog, propagated by data flow
in line 3, is not updated. The patch is to update the variable
when receiving an updating command (line 8).

Besides the above case, some options may propagate
through control-flow paths. Taking Figure 1 as an example, the
variable opt_log_queries_not_using_indexes holds the
original option value, while the variable opt_specialflag
is controlled by the option value. When the option is true,
opt_specialflag would be initialized (line 2-3). MySQL,
however, does not update opt_specialflag when users turn
on the option at runtime. The patch is to remove the stale
variable opt_specialflag.

2) Usage Bugs: Besides the above cases, about another half
(41/75=55%) of OCBugs are about using configuration-related
variables. The essence of the bugs lies in wrong program
logic that uses the variables, while the variables themselves
are correctly updated. Our study shows that these cases can
be further classified into three types. First, the programs may
not use the dynamically updated variables at all, although the
variables have been well-defined by assigning or propagating
the latest values. Second, the programs have considered using
the updated values, but the values trigger bugs since the
handling code is faulty. Third, the handling of new option
values itself is correct, but the updating timing may trigger

data race. We will present OCBug examples for each type in
the following paragraphs.

Fail to consider handling updated values. The programs
may miss to handle the situation of configuration updates in
special program paths. Taking Redis #4545 [6] as an example,
of which the symptoms have been described in Section II-B.
As shown in Figure 2(d), Redis evaluates whether AOF rewrite
is completed every few milliseconds (line 6), and continues to
rewrite if not. The developers miss to handle the situation
of appendonly updating from ‘yes’ to ‘no’, when the AOF
rewrite has not been completed. It caused Redis to infinitely
repeat the AOF rewrite operations (line 7). The fix is to add
handling of the updated value (line 5).

Improperly handle updated values. After on-the-fly con-
figuration updates, the programs try to handle and use the
updated options, but the handling code may be faulty. For
example, in Figure 2(e), when users dynamically update the
option Log_directory (line 2), PostgreSQL would force log
rotation to ensure writing logfiles in the right place (line 6).
PostgreSQL, however, does not create a new directory when
the option is updated to a nonexistent path. This will cause
functional errors in the PostgreSQL logger [40]. The patch is
to create a new directory (line 5).

Bad update timing that causes data race. Users can
update the options at anytime during program execution. This
mechanism will potentially cause data race. For example,
in MySQL, if the option innodb_buffer_pool_size is
reduced, MySQL would resize the buffer pool, and free
unused buffer blocks. In Figure 2(f), MySQL #100630 [13]
occured if MySQL shrinked the buffer pool just between
buf _pool_is_obsolete() and optimistic_latch_leaves(). The for-
mer is to check if the buffer pool is resized, while the latter
is to access the buffer. This bug causes buffer overflow, and
the patch is to add locks for buffer blocks (line 5-7).

Finding 2: Nearly half (45%) of OCBugs happened
during propagating configuration-related variables, while
the other half (55%) of OCBugs are about using those
variables.

This finding implies that OCBugs can be basically divided
into two main types. The first type can be detected by ana-
lyzing the states of configuration-related variables inside the
target program, since there exist control or data dependencies
among the variables. The second type, however, is hard to
be detected by program analysis. Instead, they can only be
detected by examining external behaviors of the program.
Taking the OCBug in Figure 2(d) as an example, it is hard
to recognize that the code snippet misses the check in line
5. In this regard, we extend the test oracle described at the
end of Section II-B — The effects should be divided into
internal and external effects. Internal effects are value changes
of variables related to configuration options, while external
effects are behaviors that can be observed outside the program.

Internal and external effects serve as two complementary
oracles to detect propagation and usage bugs, respectively.

Propagation bugs do not always lead to observable behaviors
(external effects), but program variables may have inconsistent
states (internal effects). Usage bugs are usually not caused
by wrong configuration-related variables (internal effects),
but frequently lead to observable behaviors (external effects).
Thus, both types of effects are necessary in detecting OCBugs.
Staccato [31] first collects configuration-related program vari-
ables, then checks if their values are changed after dynamic
configuration updates. If not, Staccato reports a bug. This
approach will miss the cases having external effects, since the
configuration-related variables have changed as expected. It
may also miss some cases having internal effects, which load
wrong updated values. In both cases, Staccato cannot report
bugs. As a result, Staccato can detect up to (7+11)/75=24%
OCBugs in ideal.

D. Triggering Conditions of OCBugs

In order to guide and facilitate automated test-case genera-
tion for testing OCBugs, we conduct a comprehensive study
towards the triggering conditions of OCBugs in this section.
In specific, we break RQ3 into following three sub-questions:

o RQ3.1: What option values are able to trigger OCBugs?
¢ RQ3.2: How many updating times can trigger OCBugs?
o RQ3.3: What dependencies are required by the OCBugs?

1) Option values: An option value may be either valid or
invalid, where an invalid value means breaking the constrains
of the option. We first investigate if option values triggering
OCBugs should be valid or not. To achieve this, we manually
collect option constraints from documents and source code.
The results show that both valid values (66/75=88%) and
invalid ones (9/75=12%) can trigger OCBugs. This inspires us
to generate both valid and invalid option values when testing
OCBugs.

For invalid values, we only need to generate one value that
breaks the option constraints. For valid values, however, the
generating policies may be different according to the option
types. It is easy to generate values for Boolean or enumerable
options, since we can simply enumerate all possible values.
As for numeric options, we need to study the characteristics
of the specific values that trigger OCBugs. The results show
that, among 33 OCBugs that are related to numeric options
with valid values, most (22/33=67%) of them are insensitive to
option values. It means an arbitrary different numeric value is
enough to trigger a bug. Meanwhile, one third (11/33=33%) of
OCBugs can be triggered by changing the values drastically,
e.g., exponentially increasing or decreasing the values. For
example, MySQL #100630 [13] is triggered by changing the
buffer pool size from 2G to 128M. In this regard, when testing
numeric options, we can always exponentially increase or
decrease their values.

Finding 3.1: Both valid and invalid option values should
be taken into consideration when testing OCBugs. The
option values should be drastically changed when testing
numeric options.

2) Updating times: An OCBug may require multiple up-
dating operations to be triggered. It will be exponentially
explosive to test all combinations of multiple updating oper-
ations. To help this situation, we study the times of updating
operations required to trigger OCBugs. To achieve this, we
checked the bug description and commit messages of all
OCBugs. The results show that the vast majority (71/75=95%)
of OCBugs require one time of on-the-fly update on one
option to trigger the bugs. In very limited cases (4/75=5%),
multiple updating operations are needed, i.e., updating one
option multiple times or even updating multiple options. For
example, in Redis #8030 [41], the bug is triggered by updating
the option appendonly from ‘yes’ to ‘no’, then back to ‘yes’.

Finding 3.2: Most (95%) of OCBugs can be triggered
by dynamically updating one option once. It means
performing one updating operation in one test execution
is enough for exposing the vast majority of OCBugs.

3) Option dependencies: One configuration option usually
depends on other options to take effects, no matter the option
is loaded at the startup phase or updated on the fly. The
dependency problem may also lead to an exponential explosion
similar to the above paragraph. Therefore, we study option
dependencies required to trigger OCBugs. Please note that
these dependencies are different from the cases of updating
multiple options above. Here the dependencies mean options
that should be set during the startup phase. To achieve this,
we record the options set by users during the startup phase,
and replace their values with default ones. If an OCBug can
be no longer triggered, it means there is a dependency.

The results show that in most (55/75=73%) OCBugs, the
target options do not depend on any other option, while
more than one fourth (20/75=27%) of OCBugs have de-
pendencies. In this regard, we further investigate the source
code and documentation related to the 20 OCBugs. Among
these, the updated options of 20% (15/75) OCBugs are
data/control dependent on other options in source code. As
shown in Figure 1, triggering MySQL #28808 [5] needs to
turn on slow_query_log to enable the updated option
opt_log_gqueries_not_using_indexes. Besides, the de-
pendencies of 7% (5/75) OCBugs are hard to be obtained
from source code. For example, triggering MySQL #5394 [42]
first needs to turn on query_cache_type, then updates
max_sort_length. The buggy code snippet, however, does
not consider using the updated option. As a result, updating
max_sort_length does not take effect. In this case, it is
hard to obtain the dependency between query_cache_type
and max_sort_length from the source code, which does not
appear at all.

Finding 3.3: In most (73%) of OCBugs, the target
options do not depend on any other option. Dependencies
of 20% OCBugs can be obtained by program analysis.
However, the other 7% may need combinatorial interac-
tion testing on options.

oL T TTETEE rTTTTT T TES T T EEE T EEEE S
' Generate .
¢ ! On-the-fly Test OCBug Detection

Target Option

1
! !
! 1
1
| : ' - '
4 ! Sampling ' Taint Internal Effect ! a
Option Values 1 alysis i
(/) — p l — Analysis Detection . n
1 1 1
Soun.::.Code : : : : Potential
V= 1| Selectand |1 ||Three-stage| | External Effect | 1 OCBug
X = : Generate Tests | , : Testing Detection :
1 1 1
1 \ Il

Test Case

Fig. 3: Overview of PARACHUTE

III. DETECTING OCBUGS

In this section, we describe the design of PARACHUTE, an
automated testing framework in detecting OCBugs. We first
introduce the overview of PARACHUTE, as well as its technical
challenges. After that, we introduce two main components
of PARACHUTE, i.e., test-case generations and OCBug de-
tections. Suggested by Finding 2, the detection component is
supposed to handle two situations: test cases that cause either
internal effects or external effects.

A. Overview of the OCBug Testing Framework

Figure 3 shows the overview of PARACHUTE, which re-
quires three inputs: source code of Software Under Test (SUT),
target configuration options of SUT, and the official test suite
of SUT. The PARACHUTE framework contains two major
tasks: generating on-the-fly tests and detecting OCBugs.

Generating on-the-fly tests. PARACHUTE first generates
test cases of on-the-fly configuration updating for the target
options. To achieve this, PARACHUTE leverages and mutates
the existing test suite. The main challenge of this task is
the huge testing space. For each target option, PARACHUTE
needs to mutate all test cases of the test suite. For each test
case, PARACHUTE further needs to generate a large number
of mutations, since one option may have different values,
updating times, dependencies and so on. To address this
challenge, we conduct a comprehensive study towards the
triggering conditions of OCBugs in Section II-D, and get three
conclusions to guide the design of test-case generation.

Detecting OCBugs. PARACHUTE then leverages metamor-
phic testing to detect OCBugs. In specific, PARACHUTE tests
the target program twice, using configuration options loaded
since system startup or updated on-the-fly, separately. After
that, PARACHUTE detects OCBugs based on the following
oracles according to Finding 2:

e Oracle I (Internal Effects): The values of program vari-
ables related to configuration options should be the same,
no matter the options are loaded since system startup or
updated on-the-fly.

e Oracle II (External Effects): The outputs of the system
under test should be the same, no matter configuration
options of the system are loaded since system startup or
updated on-the-fly.

For Oracle I, the main challenge is to determine the involved
variables. The challenge of Oracle II is that the effects may not
happen immediately after an option is dynamically updated.

Instead, programs usually finish the current workload using
old option values, and apply new values later. In this case, the
programs have no OCBugs, but PARACHUTE may believe the
updated options do not take effect and report false positives.
To solve this problem, we propose a three-stage metamorphic
testing approach.

B. Generating On-the-fly Tests

Mature software projects usually have official test suite,
which is rarely designed for the situation of on-the-fly option
updating. Therefore, PARACHUTE mutates the existing test
cases to trigger OCBugs. This process, however, is non-trivial.
First, a project may have thousands of test cases and hundreds
of options. It is time-consuming to perform all test cases for
each option. PARACHUTE should filter out the test cases that
are not related to the target option. Second, in each selected
test case, PARACHUTE will insert a command to update an
option, which may have a large number of possible values.
PARACHUTE has to determine the values that should be tested.
Third, PARACHUTE needs to generate new test cases based on
the selected test cases and values. Each new test case contains
two executions, since PARACHUTE uses metamorphic testing.

Selecting existing test cases. As running all the test cases
for all options may be time-consuming, we need to pre-select
a subset of test cases for each target option, and filter out the
most majority of cases that are not related to the option. To
achieve this, PARACHUTE first integrates ConfMapper [43] to
find the original variables used to load options, then instru-
ments the usage of those variables by using Clang [44]. After
that, PARACHUTE runs all test cases for one time, and obtains
the option set that can be triggered by each test case. Finally,
PARACHUTE filters out the test cases that cannot trigger the
target option.

Determining option values. According to Finding 3.1 in
Section II-D, we need to test both valid and invalid values
for a target option. To achieve this, PARACHUTE first collects
the constraints of the option by applying the existing tools,
SPEX [16] and Ceitlnspector [15]. SPEX uses pattern-based
program analysis method to obtain constraints and dependen-
cies of options from source code. Ceitlnspector defines syntax
and semantic constraints for different types of options. On
the one hand, PARACHUTE uses the constraint violation rules
defined in Ceitlnspector [15] to generate invalid values of the
target option. In specific, for Boolean, enumerable or numeric
options, PARACHUTE generates invalid values beyond the
value set or valid range (e.g. MIN-1, MAX+1). For options of
other types,PARACHUTE generates invalid values by violating
their syntax (e.g., an invalid ip address).

On the other hand, PARACHUTE samples values satisfying
the configuration constraints. For each Boolean and enumer-
able option, PARACHUTE chooses all its possible values. As
for numeric options, it is hard to test all values. Guided
by Finding 3.1, PARACHUTE samples values changed ex-
ponentially for a given sampling number. For example, the
valid range of option binlog_cache_size is [2'?, 23?].
PARACHUTE will sample {212, 216, 220 924 228 932} " jf

Initial

Configuration Steps of Test Case Outputs
=] o) [o =) N
Execution 1 e :@
o ConfA=v0 ! Stepl Siepz StepN | Ouput I
) =1 [o o é:o'} o) | [
Execution 2 e’ = :@
— ! Update S
oo ConfA=vI i Step 1 Step2 ConfAtov0StepN__ i Output2
. =1 =) o o |
Execution 3 e’ ' :@
o ConfA=vl | Stepl _Step2 StepN__i Output3.
‘ =l i fo o g
Execution 4 e : = ‘ :@
ConfA=vi i/l Sepl Step2 SEpN | Outpur 4

Fig. 4: Examples of metamorphic test executions

users want to sample six values. For options of other types,
PARACHUTE generates valid values by satisfying their syntax
(e.g., a valid ip address).

Generating new test cases. This process involves two tasks.
First, for each pair of the selected values, PARACHUTE needs
to generate two executions as one new test case. As shown in
the first two executions of Figure 4, Execution 1 assigns the
option ConfA to vO at startup, while Execution 2 uses v/ at
startup but updates the value back to vO at a random place
during runtime. Please note that, PARACHUTE only needs
to insert one updating command according to Finding 3.2.
After the update, the program is supposed to have the same
behaviors in two executions since ConfA has the same value
v0. PARACHUTE regards this constraint as a metamorphic
relation to detect OCBugs.

Second, the updated option ConfA may depend on other
options to become effective. According to Finding 3.3, besides
the 73% OCBugs that do not depend on any other option,
dependencies of 20% OCBugs can be obtained by program
analysis. In this regard, PARACHUTE integrates SPEX [16],
an existing tool that can obtain option dependencies automati-
cally. PARACHUTE would satisfy control and value dependen-
cies for the target option before running each new test case.
While for the other 7% OCBugs that can only be detected by
combination testing, PARACHUTE also provides an exhaustive
testing mode with a given time budget provided by users.

C. Detecting OCBugs

With the new test cases available, PARACHUTE can detect
OCBugs by using two oracles as mentioned in Finding 2,
i.e., comparing both internal and external effects between two
executions of each new test case.

1) Detecting OCBugs using Internal Effects: The internal
effects are used to detect propagation bugs. When updating
an option, the internal effects are value changes of its cor-
responding variables, including the variable that reads and
stores the original value of the option, as well as variables that
are control/data dependent on the original variable. Therefore,
PARACHUTE needs to collect the option-related variables. To
achieve this, PARACHUTE firstly conducts taint analysis to find

[Conduct Execution 1 & 2] Conduct Execution 3]

L
Output 1 = Output 2 Output 2 == Output 3 n
Config update takes effect,
Yes Yes but improperly handled.

[Conduct Execution 4]

Qutput 1 == Output 4 n
The config update is

not handled.

Well handled

Delayed Usage

Fig. 5: Flowchart for detecting OCBugs using externel effects

the configuration-related variables, then instruments the source
program.

The taint analysis starts from the variable, which first reads
and stores the option value. PARACHUTE uses ConfMap-
per [43] to find the original variable of each option, then
propagates the taints along data-flow paths. The data-flow anal-
ysis is inter-procedural, field-sensitive, and supports pointer
analysis. Besides, PARACHUTE also supports control-flow taint
analysis. For example, in line 2-3 of Figure 1, the analysis will
taint opt_specialflag, which is control depended on the
option variable opt_log_queries_not_using_indexes,
and changed to different values in different branches.

Then, PARACHUTE instruments the source program to
record the values of tainted variables. One option may taint
many program variables, and lead to significant overhead
after instrumentation. To remedy this situation, we investigated
the propagation bugs again, and found the overwhelming
bugs (32/34=94%) were triggered by global variables storing
incorrect or stale values. The other two cases will cause
crashes when loading new values. The crash cases have
obvious symptoms, and do not need to check internal effects.
Therefore, PARACHUTE only records global configuration-
related variables. For example, both opt_specialflag and
opt_log_gqueries_not_using_indexes in Figure 1 are
global variables. The taint analysis is implemented using
LLVM [45], while the instrumentation is based on Clang [44].

2) Detecting OCBugs using External Effects: The external
effects are used to detect usage bugs. When updating an option,
its external effects are program behaviors that can be observed
outside the program. PARACHUTE records outputs, crashes,
and hangs as external effects during testing. The challenge
here is that the effects of option updating may not happen
immediately. Runtime configurable systems generally allow
existing sessions to adopt the updated values after they com-
plete the currently-executing transactions and commands [33]—
[36]. PARACHUTE needs to avoid false positives caused by the
delayed usage of new values.

To achieve this, we propose a three-stage metamorphic
testing approach to address this challenge. PARACHUTE con-
ducts two additional executions in each test, i.e., totally four
executions in each test as shown in Figure 4. To confirm if
there is an OCBug, PARACHUTE compares the results of three
pairs of executions, including Execution 1 and 2, Execution

'System starts with
/div_precision_increment as 0
1 Create Table t1 Select 1/3 as col;
2 Select col from tl;

Output: 0

System starts with
/div_precision_increment as 2
1 Create Table tl Select 1/3 as col;
2 Set div_precision_increment = 0;
3 Select col from t1;

Output: 0.33

(a) Execution 1

(b) Execution 2

/System starts with
//div_precision_increment as 2

1 Create Table t1 Select 1/3 as col;
2 Select col from t1;

//System starts with
/div_precision_increment as 2

1 Setdiv_precision_increment = 0;
2 Create Table t1 Select 1/3 as col;

3 Select col from t1;

Output: 0

Output: 0.33

(c) Execution 3 (d) Execution 4

Fig. 6: A MySQL example of using three-stage testing

2 and 3, Execution 1 and 4. The workflow is illustrated in
Figure 5.

First Stage: PARACHUTE compares external effects be-
tween the first two executions. If the effects are the same,
it means the program successfully handles the update. If the
effects are different, there are three cases: a) the program is
using old values for the current transaction, while new values
do not take effects so far; b) the program improperly handles
new values; c) the program does not handle new values at all.
The first case is a common practice, while the last two cases
are OCBugs.

Second Stage: PARACHUTE adds an execution in the test
case, as shown in Figure 4 Execution 3, which deletes the up-
dating command. PARACHUTE compares the effects between
Execution 2 and 3. If the effects are different, it indicates
the new value has already taken effects, meaning the program
improperly handles the new value. Thus, PARACHUTE reports
an OCBug. If the effects are the same, there still are two
possibilities: delayed usage or no handling at all.

Third Stage: PARACHUTE adds another execution in the
test case, as shown in Figure 4 Execution 4, which places the
updating command at the beginning. PARACHUTE compares
the effects between Execution 1 and 4. If the effects are
the same, it indicates the program successfully handles the
updating, since there is no working transaction before the
updating command. Otherwise, it means the program does
not handle the new value at all. Thus, PARACHUTE reports
an OCBug.

Figure 6 shows a real-world example of using the three-
stage metamorphic testing approach in MySQL. The option
div_precision_increment indicates the number of deci-
mal places for answers of division operations. PARACHUTE 1)
runs Execution 1 and 2, and finds the outputs are different; 2)
runs Execution 2 and 3, and finds the outputs are the same;
3) runs Execution 1 and 4, and finds the outputs are also the
same. Thus, PARACHUTE knows the case is caused by delayed
usage of the new option value, and does not report any bug.

TABLE IV: The effectiveness of detecting known OCBugs.

TABLE V: New OCBugs detected by PARACHUTE.

Reproduced Detected by Detected by

OCBug Type

OCBugs PARACHUTE Staccato
Propagation Bugs 33 31 15
Fail to consider loading 8 8 8
Load wrong updated values 15 15 0
Miss to propagate 10 8 7
Usage Bugs 23 11 0
Fail to consider handling 7 4 0
Improperly handle 16 7 0
Total 56 42 15

IV. EVALUATION

To evaluate PARACHUTE, we consider the following three
research questions:

e RQ1: How effective is PARACHUTE in detecting
known OCBugs? This question examines the recall of
PARACHUTE by calculating the percentage of bugs that
can be detected among all known bugs.

o« RQ2: How effective is PARACHUTE in detecting un-
known OCBugs? This question evaluates the precision
of PARACHUTE by calculating the percentage of true
positives among all reported bugs.

e RQ3: Can PARACHUTE outperform the state-of-the-art
tool for detecting configuration update bugs? This ques-
tion compares PARACHUTE with Staccato, the most re-
lated work for detecting OCBugs.

A. Effectiveness of Detecting Known OCBugs

We evaluate the effectiveness of PARACHUTE in detect-
ing known OCBugs. As OCBugs with obvious symptoms
(e.g., crash, hand, memory leak) can be detected by existing
techniques like fuzzing. We mainly evaluate PARACHUTE in
detecting OCBugs leading to functional errors. We success-
fully reproduced 38 out of the 44 functional-error OCBugs in
Table II. To avoid over-fitting, we repeated the bug collection
methods on MariaDB and Httpd, and reproduced 18 bugs that
were not included in the empirical study. Totally, we evaluate
PARACHUTE on 56 OCBugs from 7 systems. For each bug,
PARACHUTE tests the buggy software version with its official
test suite for 20 hours. Each target system runs on a virtual
machine hosted on the cloud.

PARACHUTE successfully detected 75% (42/56) of the ex-
isting bugs. The results are shown in Table IV. PARACHUTE
can detect most (31/33=94%) of propagation bugs, and nearly
half (11/23=48%) of usage bugs. PARACHUTE failed to detect
14 bugs due to three reasons. First, the triggering conditions
for the bugs are not satisfied (6 cases). As the testing space
is huge, PARACHUTE uses heuristic strategies to generate test
cases, and thus inevitably misses some corner cases: a) The
option requires a special value. For example, Nginx #796 [46]
requires updating the option to different paths of the same file,
e.g., from absolute path to relative path, or vice versa. b) The
option has to be updated multiple times. c) It is hard to obtain
the dependency of the option from source code. Second, the
taint analysis fails to get configuration-related variables due to

Bug ID Version(s) Status Type! O. O.IIF Staccato
MySQL #105933 v5.7-latest Confirmed Type-2 v
MySQL #105957 vS5.7-latest Confirmed Type-2 v
MySQL #105964 vS5.7-latest Confirmed Type-2 v
MySQL #105978 v5.7-latest Confirmed Type-1 vV v
MySQL #106675 v5.7 Confirmed Type-2 v
MySQL #106676 v5.7 Confirmed Type-2 v
MySQL #106684 v5.7 Confirmed Type-2 v

Redis #10119 v6.2-v7.0 Fixed Type-1 v

Squid #5224 v5.0-latest Pending Type-1 v v
Squid #5225 v5.0-latest Pending Type-1 Vv v
Postgres #17538 v14.2-latest Confirmed Type-1 vV v
MariaDB #29076 v10.3-latest Fixing Type-2 v
MariaDB #29077 v10.3-latest Fixing Type-2 v

T Type-1 is short for propagation bugs; Type-2 is short for usage bugs.
T 0.I & O.I is short for Oracle T and Oracle II.

complicated pointer and alias analysis (2 cases). Third, some
bugs require special environments and operations (6 cases).
For example, MariaDB #23988 [47] occurs in a cluster of
three nodes. But the official test suite does not satisfy the
requirement.

Answer to RQ1: This result indicates PARACHUTE can
effectively detect the existing OCBugs with the recall of
75% (42/56).

B. Effectiveness of Detecting Unknown OCBugs

We also apply PARACHUTE on the latest version of SUT to
evaluate whether PARACHUTE can detect unknown OCBugs.
We evaluate PARACHUTE on the 7 software systems, includ-
ing MariaDB, Httpd and the systems listed in Table I. For
each system, we randomly test 100 options, and conduct
PARACHUTE to test each option for 20 hours on three vir-
tual machines in parallel. This experiment takes 21 virtual
machines for a month.

PARACHUTE reported 13 true positives and 2 false positives
according to our manual analysis. We report the 13 OCBugs
to developers, and 11 of the bugs have been confirmed or fixed
by developers, as shown in Table V. The 13 OCBugs come
from 5 systems, including MySQL, Redis, Squid, PostgreSQL
and MariaDB. Among these new bugs, there are 5 propagation
bugs and 8 usage bugs. Besides, PARACHUTE also reported 2
false positives, which were caused by indeterminate results
of some test cases. For example, in MySQL, the operation
Explain Select is used to predict the statement execution plan,
and returns the number of rows MySQL plans to examine for
the query [48]. The number is an estimate and not always
exact, which misled the analysis of PARACHUTE.

We found the unknown OCBugs could cause the systems
functional errors or performance degradation. For example,
in MariaDB #29076, updating the option time_zone be-
tween two same Select operations, would make Query Cache
incorrectly identify them as different queries. The bug is
caused by improperly handling the updated value. It would
also cause serious performance degradation in extreme cases;
MariaDB repetitively performs time-consuming queries and
stores redundant results, rather than returning the result from

the cache directly. The bug quickly caught the attention of
developers after we reported it.

Answer to RQ2: This result indicates PARACHUTE can
effectively detect unknown OCBugs in popular, real-world
software systems with the precision of 87% (13/15).

C. Comparison with the State-of-the-art Tool

We compare PARACHUTE with Staccato [31], the state-
of-the-art tool for detecting configuration update bugs. Stac-
cato first collects configuration-related program variables, then
checks if their values are changed after dynamic configuration
updates. We evaluate the effectiveness of Staccato in detecting
the same known OCBugs in IV-A, and unknown bugs found by
PARACHUTE. Staccato is designed for Java and PARACHUTE
is for C/C++, so we evaluate the theoretical upper bound of
Staccato in detecting these bugs. As Staccato did not publish
reproduction steps for its detected bugs, it is hard to evaluate
PARACHUTE on the Java programs evaluated by Staccato.

The evaluation shows that Staccato can detect 27% (15/56)
of the reproduced OCBugs, as shown in Table IV. Staccato
successfully detected 45% (15/33) of propagation bugs. The
reason is that Staccato can only detect whether the option value
is updated, but it is hard for Staccato to detect the correctness
of the updated values. As a result, Staccato missed all of the
bugs caused by Loading wrong updated values (as mentioned
in Section II-C1). Moreover, Staccato can detect most (7/10) of
OCBugs arising from Missing to propagate, but failed to detect
3 OCBugs caused by control-flow propagation (e.g., MySQL-
28808 in Figure 1). As for usage bugs, the configuration-
related variables are correctly updated. Staccato can not detect
this type of OCBugs. Moreover, Staccato can detect 4 of the 13
unknown bugs reported by PARACHUTE, as shown in Table V.
All the four bugs are caused by Missing to propagate. Among
both known and unknown bugs, PARACHUTE can detect 2.9x
OCBugs compared with Staccato, i.e., (42+13)/(15+4).
Answer to RQ3: This result indicates PARACHUTE can
detect more OCBugs (2.9x) compared with the state-of-
the-art tool.

V. DISCUSSION

Quality of test suite. PARACHUTE leverages and mutates
existing test suite, instead of generating completely new test
cases. If the existing tests do not provide proper test environ-
ments and operations to trigger the bugs, PARACHUTE will
lose the opportunity to detect and identify them. Many usage
bugs usually require complicated environments and test steps.
To this end, PARACHUTE provides interfaces to accept user-
provided test suite, to specifically test some functions and
scenarios. On the other hand, fuzzing [23]-[30], [49], [50]
is popular automated testing technique that generates diverse
tests and improves the code coverage. Our future work will lie
in combining PARACHUTE with fuzzing techniques to generate
high-quality test cases to detect OCBugs.

Generating on-the-fly tests. Since the configuration space
is huge, PARACHUTE uses heuristic strategies to sample option
values. However, some bugs require special option values. In

this regard, PARACHUTE also provides interfaces to accept
user-provided options and their dependencies, as users usually
have knowledge of the constraints of the options. Besides,
PARACHUTE mutates test cases by inserting one updating
command at a random place of the existing test, considering
the overhead of testing. The placement may lead to both false
positives and false negatives. Parachute applies a three-stage
comparison approach to avoid the false positives. However,
the randomly placed update events may not trigger some bugs,
thus lead to false negatives. Our future work is to investigate
more efficient methods to mutate tests by integrating program
analysis, including multiple updates and intelligent places.

Representativeness of studied software. The findings of
our research may only apply to database and web server
systems. We attempt to study a wide variety of popular open-
source configurable systems. And we selected 5 widely-used
systems, which cover different domains, including database
and web server. Another criteria to select study targets is
that the systems expose many runtime configurable options.
It makes us abandon some popular software (e.g., HDFS has
only 16 (out of 583) runtime configurable options [51]. Most
options can only be updated after restarting the system). In
addition, software from other domains could have different
characteristics. We will explore the characteristics of OCBugs
from more categories of software in the future work.

Execution order of three-stage testing. The execution
order in Figure 5 is designed for reducing false positives
caused by delay usage of the option, and diagnosing the root
causes of the bugs. The order of execution can be adjusted,
but these three stages are necessary. For example, comparing
Execution 1&4 first can find some bugs early. However,
updating options right after execution starts cannot trigger all
OCBugs. Parachute still needs Execution 2 and 3 to detect
these bugs (e.g., the bug in Figure 2d). In addition, comparing
Execution 1&4 cannot reveal the root causes (i.e., improperly
handled or not handled) of the early-detected bugs.

VI. RELATED WORK

Detecting configuration-related bugs. Many OCBugs are
non-crashed, leading to various forms of functional errors,
which requires specific oracles to detect. Popular automated
testing techniques, such as Fuzzing [23]-[30], [49], [50], could
not effectively detect such functional bugs due to the lack of
test oracles. However, fuzzing method could generate various
tests to help PARACHUTE detect OCBugs.

Some works [22], [31], [37], [38], [52]-[55] focus on de-
tecting configuration-related functional defects or performance
defects in source code. Ctest [22], [52] connects production
system configurations to software tests to detect configuration-
induced failures. Ctest simply reuses official tests and oracles,
which cannot detect OCBugs effectively. CP-Detector [38]
suggests performance properties for configuration options to
detect Configuration-handling Performance Bugs. The most
related work is Staccato [31], which is designed to find bugs
for dynamic configuration updates. Staccato identifies a bug if
programs use the stale value of configuration-related variables

after dynamic configuration updates. Our study shows that
Staccato misses all of usage bugs, and the cases which load
wrong updated values. In this paper, based on our in-depth
research, we conduct metamorphic testing and check both the
internal and external effects of configuration updates. Thus,
PARACHUTE can detect all types of OCBugs.

Configuration error injection testing. Some works [15]-
[21] focus on evaluating software reliability and diagnosability
regarding configuration errors. These works inject configura-
tion errors into the system under test (SUT), and then eval-
uate the SUT reactions. ConfErr [19], Conflnject [21], Con-
fTest [20], and ConfDiagDetector [17] use predefined muta-
tion rules to generate types of configuration errors. SPEX [16],
ConfVD [18] and Ceitlnspector [15] generate configuration
errors by violating the specifications of options. However, all
these works directly leverage the official test suite, which are
not designed specifically for on-the-fly configuration updates.
Therefore, these works are hard to detect OCBugs.

Metamorphic testing. Some works [56]-[61] use metamor-
phic testing [32] to detect logical bugs. Adamsen et al. [56]
use specific metamorphic relations to enhance existing test
suites for Android. SetDroid [57] uses setting-wise metamor-
phic fuzzing for finding system setting defects in Android
applications. The work [58] uses metamorphic model-based
testing with equivalence of queries to test DAT systems. Our
work also leverages the idea of metamorphic testing to detect
OCBugs in runtime configurable systems. Based on the root
cause study, we proposed two oracles to identify OCBugs.

VII. CONCLUSION

Many modern software systems support updating configu-
ration options on the fly without restarting the system. This
mechanism can improve the system flexibility and provide per-
sistent services at the same time. However, on-the-fly updating
configuration may also introduce OCBugs. In this paper, we
studied the symptoms, root causes, and triggering conditions of
OCBugs, and proposed PARACHUTE to detect OCBugs guided
on the study. PARACHUTE leverages the idea of metamorphic
testing to detect OCBugs using two types of effects as oracles.
The evaluation results show that PARACHUTE can effectively
detect both known and unknown bugs, and outperforms the
state-of-the-art tool.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
insightful comments. We also thank Professor Tingting Yu for
helpful suggestions, and Yuanliang Zhang, Xiangbing Huang
for paper proofreading and experiments. This research was
funded by NSFC No. 61872373, No. 62272473, No. 62202474
and No. UI9A2067.

REFERENCES

[1] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have given Me Too Many Knobs!: Understanding and Dealing with
over-Designed Configuration in System Software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 307-319.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An
evolutionary study of configuration design and implementation in cloud
systems,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 1EEE, 2021, pp. 188-200.

Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, 2011, pp. 159-172.
“MySQL 8.0 Reference Manual. Server Option,
System Variable, and Status Variable Reference.”
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-
reference.html, 2022.

“MySQL Bug #28808. log_queries_not_using_indexes variable dynamic
change is ignored.” https://bugs.mysql.com/bug.php?id=28808, 2007.
“Redis Bug #4545. dead loop AOF rewrite when config set appendonly
no.” https://github.com/redis/redis/issues/4545, 2017.

“PostgreSQL Bug #16160. Minor memory leak in case of starting post-
gres server with SSL encryption.” https://www.postgresql.org/message-
id/16160-18367e56e9a28264%40postgresql.org, 2019.

“MySQL Bug #65225. InnoDB miscalculates auto-
increment after changing auto_increment_increment.”
https://bugs.mysql.com/bug.php?id=65225, 2012.

“Redis Bug #4904. Use memtoll() in CONFIG SET client-output-buffer-
limit.” https://github.com/redis/redis/pull/4904/, 2018.

“PostgreSQL ~ Bug #3589. postgresql reload doesn’t re-
flect log_statement.” https://www.postgresql.org/message-
1d/200708300302.17U32sP9005096%40wwwmaster.postgresql.org,
2007.

“Squid Bug #579. useragent log disable.”
cache.org/show_bug.cgi?id=579, 2005.

“Nginx Bug #945. when setting master_process
segmentation fault when sent mutiple HUP
https://trac.nginx.org/nginx/ticket/945, 2018.

“MySQL Bug #100630. buf_pool_is_obsolete is not thread safe.”
https://bugs.mysql.com/bug.php?id=100630, 2020.

“Redis Bug #5025. Fix config_set_numerical_field() integer overflow.”
https://github.com/redis/redis/pull/5020, 2020.

W. Li, Z. Jia, S. Li, Y. Zhang, T. Wang, E. Xu, J. Wang, and
X. Liao, “Challenges and opportunities: an in-depth empirical study on
configuration error injection testing,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 478-490.

T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, 2013, pp. 244-259.

S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic
messages for software configuration errors,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015, pp.
12-23.

S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, and T. Wang, “Confvd:
System reactions analysis and evaluation through misconfiguration injec-
tion,” IEEE Transactions on Reliability, vol. 67, no. 4, pp. 1393-1405,
2018.

L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing
resilience to human configuration errors,” in 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC
(DSN). IEEE, 2008, pp. 157-166.

W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation,”
in Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, 2017, pp. 88-97.

F. A. Arshad, R. J. Krause, and S. Bagchi, “Characterizing configuration
problems in java ee application servers: An empirical study with
glassfish and jboss,” in IEEE International Symposium on Software
Reliability Engineering, 2014.

X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures,” in /4th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 735-751.

H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui, “Healer:
Relation learning guided kernel fuzzing,” 2021.

https://bugs.squid-

off, nginx

singals.”

[24]

[25]

[26]

[27]

[28]

[29]

[30]
(31]

[33]
[34]

[35]

[36]

(371

[38]

[39]

[40]
[41]
[42]

[43]

[44]
[45]

[46]

(471

[48]

R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “Squir-
rel: Testing database management systems with language validity and
coverage feedback,” 2020.

M. Wang, J. Liang, C. Zhou, Y. Jiang, R. Wang, C. Sun, and J. Sun,
“RIFF: reduced instruction footprint for coverage-guided fuzzing,” in
2021 USENIX Annual Technical Conference, USENIX ATC 2021, July
14-16, 2021, 2021, pp. 147-159.

M. Wang, Z. Wu, X. Xu, J. Liang, C. Zhou, H. Zhang, and Y. Jiang,
“Industry practice of coverage-guided enterprise-level dbms fuzzing,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), 2021, pp. 328-337.
C. Zhou, M. Wang, J. Liang, Z. Liu, and Y. Jiang, “Zeror: Speed
up fuzzing with coverage-sensitive tracing and scheduling,” in 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
2020, pp. 858-870.

D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in 2019 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2019, pp. 754-768.

A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely invariants
as feedback for fuzzers,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2829-2846.

“American Fuzzy Lop.” https://lcamtuf.coredump.cx/afl/, 2022.

J. Toman and D. Grossman, “Staccato: A bug finder for dynamic
configuration updates,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

S. C. C. Tsong Y. Chen and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” in Technical Report. HKUST-
CS9801, HongKong University of Science and Technology., 1998.

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

“PostgreSQL. Setting Parameters.” https://www.postgresql.org/docs/14/config-

setting.html, 2022.
“Nginx. Changing Configuration.” http://nginx.org/en/docs/control.html,
2022.

“MySQL. Dynamic System Variables.”
https://dev.mysql.com/doc/refman/8.0/en/dynamic-system-
variables.html, 2022.

“Redis. CONFIG SET parameter value.”

https://redis.io/commands/config-set/, 2022.

T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in /2th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 619-634.

H. He, Z. Jia, S. Li, E. Xu, T. Yu, Y. Yu, W. Ji, and X. Liao, “Cp-
detector: using configuration-related performance properties to expose
performance bugs,” in ASE '20: 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2020.

S. Zhou, X. Liu, S. Li, Z. Jia, Y. Zhang, T. Wang, W. Li, and X. Liao,
“Confinlog: Leveraging software logs to infer configuration constraints,”
in 2021 IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC). 1EEE, 2021, pp. 94-105.

“PostgreSQL Bug. Log_collector doesn’t respond to
https://www.postgresql.org/message-id/4F99E37E.30904
“Redis Bug #8030. AOF: recover from last write error after turn on
appendonly again.” https://github.com/redis/redis/pull/8030, 2020.
“MySQL Bug #5394. Max_sort_length does not invalidate queries in
the query cache.” https://bugs.mysql.com/bug.php?id=5394, 2004.

S. Zhou, X. Liu, S. Li, W. Dong, and X. Yun, “Confmapper: Automated
variable finding for configuration items in source code,” in 2016 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), 2016.
“Clang: a C language
https://clang.llvm.org/, 2022.

reloads.”

family frontend for LLVM.”

[58]

[59]

[60]

[61]

“LLVM Programmers Manual.” https://llvm.org/docs/ProgrammersManual.html,

2022.

“Nginx Bug #796. nginx.pid is removed during reload if pid path is
changed in nginx.conf but points to the same file through a symlink.”
https://trac.nginx.org/nginx/ticket/796, 2022.

“MariaDB Bug #23988. SST failed: No route to host after set global
wsrep_node_name on donor.” https:/jira.mariadb.org/browse/MDEV-
23988, 2020.

“MySQL 5.7 Reference Manual. EXPLAIN Output Format.”
https://dev.mysql.com/doc/refman/5.7/en/explain-output.html, 2022.

Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye, and M. Kim, “Bigfuzz:
Efficient fuzz testing for data analytics using framework abstraction,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2020, pp. 722-733.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329-2344.
“Apache Hadoop 332 - HDFS Architecture.”
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html, 2022.

R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization
for configuration testing,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
452-465.

F. Behrang, M. B. Cohen, and A. Orso, “Users beware: preference
inconsistencies ahead,” in Joint Meeting on Foundations of Software
Engineering, 2015, pp. 295-306.

H. Huang, M. Wen, L. Wei, Y. Liu, and S.-C. Cheung, “Characterizing
and detecting configuration compatibility issues in android apps,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2021, pp. 517-528.

A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting per-
formance problems via similar memory-access patterns,” in 2013 35th
International Conference on Software Engineering (ICSE). 1EEE, 2013,
pp. 562-571.

C. Q. Adamsen, G. Mezzetti, and A. Mller, “Systematic execution of
android test suites in adverse conditions,” in the 2015 International
Symposium, 2015.

J. Sun, T. Su, J. Li, Z. Dong, and Z. Su, “Understanding and finding
system setting-related defects in android apps,” in ISSTA "21: 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021.

M. Lindvall, D. Ganesan, R. Ardal, and R. E. Wiegand, “Metamorphic
model-based testing applied on nasa dat — an experience report,” in
International Conference on Software Engineering, 2015.

S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Corts, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805-824, 2016.

Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, vol. 46, no. 10, pp. 1120-1154, 2020.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2018,
pp. 132-142.

